plotypus.utils module

plotypus.utils.verbose_print(message, *, operation, verbosity)[source]

Prints message to stderr only if the given operation is in the list verbosity. If “all” is in verbosity, all operations are printed.

Parameters

message
: str
The message to print.
operation
: str
The type of operation being performed.
verbosity
: [str] or None
The list of operations to print message for. If “all” is contained in the list, then all operations are printed. If None, no operation is printed.

Returns

None

plotypus.utils.pmap(func, args, processes=None, callback=do_nothing, **kwargs)[source]

Parallel equivalent of map(func, args), with the additional ability of providing keyword arguments to func, and a callback function which is applied to each element in the returned list. Unlike map, the output is a non-lazy list. If processes is 1, no thread pool is used.

Parameters

func
: function
The function to map.
args
: iterable
The arguments to map func over.
processes
: int or None, optional
The number of processes in the thread pool. If only 1, no thread pool is used to avoid useless overhead. If None, the number is chosen based on your system by multiprocessing.Pool (default None).
callback
: function, optional
Function to call on the return value of func(arg) for each arg in args (default do_nothing).
kwargs
: dict
Extra keyword arguments are unpacked in each call of func.

Returns

results
: list
A list equivalent to [func(x, **kwargs) for x in args].
plotypus.utils.make_sure_path_exists(path)[source]

Creates the supplied path if it does not exist. Raises OSError if the path cannot be created.

Parameters

path
: str
Path to create.

Returns

None

plotypus.utils.get_signal(data)[source]

Returns all of the values in data that are not outliers.

Parameters

data : masked array

Returns

signal
: array
Non-masked values in data.
plotypus.utils.get_noise(data)[source]

Returns all identified outliers in data.

Parameters

data : masked array

Returns

noise
: array
Masked values in data.
plotypus.utils.colvec(X)[source]

Converts a row-vector X into a column-vector.

Parameters

X : array-like, shape = [n_samples]

Returns

out : array-like, shape = [n_samples, 1]

plotypus.utils.mad(data, axis=None)[source]

Computes the median absolute deviation of data along a given axis. See link for details.

Parameters

data : array-like

Returns

mad : number or array-like

plotypus.utils.autocorrelation(X, lag=1)[source]

Computes the autocorrelation of X with the given lag. Autocorrelation is simply autocovariance(X) / covariance(X-mean, X-mean), where autocovariance is simply covariance((X-mean)[:-lag], (X-mean)[lag:]).

See link for details.

Parameters

X : array-like, shape = [n_samples]

lag
: int, optional
Index difference between points being compared (default 1).